CH⁺ in the diffuse ISM : a tracer of turbulent dissipation

Edith Falgarone

ENS & Paris Observatory, France

Collaborators:

Benjamin Godard, CAB/CSIC Madrid, Spain Guillaume Pineau des Forêts, IAS, France

The CH+ puzzle in the diffuse ISM

Visible lines : Crane et al. 1995, Gredel 1997, Weselak et al. 2008

¹³CH⁺(1-0) absorption at 830 GHz : opacities τ ~ a few 0.1

Ground-based observations 830 GHz, Caltech Submillimeter Observatory Falgarone et al. 2005, Lis et al. 2009; Falgarone et al. in prep.

APEX Menten et al. 2010

CH⁺(1-0) and ¹³CH⁺ (1-0) Falgarone et al. 2010 HCO⁺(1-0)

IRAM-30m

Godard et al.

2010

CH⁺ in galactic diffuse ISM: [CH⁺]/[H] = 10^{-9} to 5 x 10^{-8}

¹³CH⁺(1-0) from CSO observations, CH⁺(1-0) from Herschel/HIFI (Falgarone et al. 2010)

Endo-energic barriers

Intermittency of turbulent dissipation

Velocity time/space derivative Méneveau & Sreenivasan (1991)

Non-Gaussian PDF transverse velocity gradients She 1991

Dissipation rate : $\epsilon \propto (\nabla x u)^2$ and $(\nabla . u)^2$

Case of ISM turbulence: Hily-Blant et al. 2008, 2009; Falgarone et al. 2009

Models of Turbulent Dissipation Regions (TDR)

- Magnetized coherent vortices : a few 10 AU, short-lived (a few 100 yr) = bursts
- Turbulent dissipation : viscous + ion-neutral friction → warm chemistry
- Thermal and chemical relaxation :

 τ_{relax} = 40 yr to 4 x10⁴ yr

- Vortex characteristics set by ambient turbulence : coupling between scales
- Few free parameters : rate of strain a, n_H, A_v
- Random line of sight : Coexistence of active and relaxation phases (a few %) + ambient medium
- Turbulent energy transfer rate : ε

Joulain et al. 1998; Godard, Falgarone, Pineau des Forêts 2009

Results of TDR models : (1) - CH⁺ reproduced without CH excess

(2) - Scalings of CH⁺ abundance

 $N(CH^{+})/N_{H} \sim 2 \times 10^{-8} \epsilon_{24} (n_{H}/50 \text{ cm}^{-3})^{-2.3} (A_{V}/0.2)^{-1}$

N(CH⁺) increases as UV-field increases and is proportional to ε

(4) - CO and HCO⁺

Sonnentrucker et al 07

(5) – SH⁺ and CH⁺

Godard et al. in prep.

(6) - Carbon is not at ionisation equilibrium

Summary and perspectives

- Only a few % of warm gas heated by turbulent dissipation reproduce observed CH⁺, SH⁺, HCO⁺ as well as CO in diffuse gas
- Abundances consistent with known energy in turbulent cascade and intermittency properties
- CH⁺ (and SH⁺) is unique : tracer of gas components with a low fraction of H₂ and direct tracer of turbulent dissipation
- Absorption spectroscopy in high-z galaxies (IRAM-PdBI, ALMA) : access to turbulent dissipation in massive reservoirs of diffuse gas