Radiation Diagnostics in Massive Star-forming Regions Using Hydrides

Arnold O. Benz Simon Bruderer Susanne F. Wampfler Carolin Dedes Ewine F. van Dishoeck Steven Doty Pascal Stäuber

Goals

1.Chemical network of water in star forming regions under far UV (FUV) and X-ray irradiation

2. lonizing radiation produced by young stars and protostars (hydrides)

Many hydrides have a high activation energy (up to several 1000 K)

Form at high temperature or by reactions with ions \rightarrow tracers of strong FUV or X-ray fields

Irradiation W3 IRS 5

FUV Radiation $N_{mfp} = 2 \ 10^{21} \ cm^{-2} \longrightarrow surface effect$ $L_{bol} = 3 \ 10^5 \ L_{\odot}$ $assume \ L_{FUV} \approx 3 \ 10^{38} \ erg/s$ $G_0 = 3 \ 10^6 \ (r_{10000AU})^{-2} \ ISRF$

X-rays $N_{mfp} = 10^{24} \text{ cm}^{-2} (7 \text{ keV}) \rightarrow \text{volume effect}$ $L_X \approx 5 \, 10^{30} \text{ erg/s}$ $\zeta_x > \zeta_{cr} \text{ for } r < 1000 \text{ AU}$

Hydrides in Young Stellar Objects

	Transition	Frequency	E _{up}	Detected w. HIFI/Herschel
		GHz	[K]	in W3 IRS5
OH	$\frac{1}{2}, \frac{3}{2} - \frac{1}{2}, \frac{1}{2}$	1834.7	269.8	emission
СН	$1_{-1} - 1_{1}$	536.7611	25.8	emission
NH	$1_1 - 0_1$	999.9734	48.0	absorption
SH	$3_1 - 2_{-1}$	1447.0123	640.6	not detected
	$1_1 - 0_1$	1033.1186	49.6	absorption
CH+	1 – 0	835.1375	40.1	
NH ⁺	1 _{3/2+} – 1 _{1/2-}	1012.5400	48.6	not detected
SH ⁺ NEWI	$1_2 - 0_1$	526.0479	25.3	
H ₂ O	many			
H ₂ O ^{tewi}	1 _{11³/2} – 0 _{00¹/2}	1115.204	53.5	absorption
H ₃ O ⁺	many		emission	

W3 IRS5

Benz et al. 2010 Bruderer et al. 2010 Gerin et al. 2010 Gupta et al. 2010 Neufeld et al. 2010 Ossenkopf et al. 2010 Schilke et al. 2010 Van der Werf et al. 2010 Weiss et al. 2010

Wampfler et al. 2010

Summary Spectral Features (high-mass star-forming regions)

Narrow emission lines SH⁺, NH, OH⁺, H₃O⁺, OH (3-5 km/s)

Broad line component OH, H₂O, OH⁺(S140 IRS1) (20 km/s)

Blue-shifted absorption (10 km/s)

CH⁺ (AFGL 2591, P Cyg), OH⁺ (W3 IRS5, P-Cyg), H₂O, H₂O⁺, NH (?)

No UV irradiation

With UV irradiation

Model with UV irradiation fits better

Detailed Modeling of Outflow Wall (AFGL 2591)

AFGL 2591

Foreground absorption

Blue-shifted absorption (P Cyg), v = 835.1375 GHz (Amano)¹⁰

Map of modeled CH⁺ (1-0) emission in AFGL 2591

Bruderer et al. 2010

Model vs Theory AFGL 2591

CH⁺ Beam averaged abundance

1D 2D

5 10⁻¹⁶ **9 10**⁻¹¹

Irradiated outflow walls enhance beam averaged CH⁺

Bruderer et al. (2010) A+A special issue

Model vs Theory AFGL 2591 CH⁺ Line flux [K km/s] **2D** observed 1-0 4.3 0.91 ± 0.03 2-1 3.7 ± 0.2 8.9

Shape of outflow, UV flux, outflow density influence!!

Bruderer et al. (2010) A+A special issue

Radiation Diagnostics Summary

1. The effect of FUV emission by massive YSO can be detected in hydrides.

2. FUV irradiation is most clearly demonstrated in ionized diatomic hydrides such as CH⁺.

3. Three components in hydrides in star-forming regions:

- Narrow lines → FUV irradiated outflow walls
- Blue shifted absorption in OH⁺, CH⁺, H₂O⁺, NH (?), some are P Cyg shaped. Outflow associated ?
- Some emission lines (H₂O, OH, OH⁺) have a broad component possibly due to shocks

Influence of outflow geometry

 → FUV enhanced species little affected (red region): CH⁺and OH⁺
→ FUV destroyed species evaporating in the hot-core (yellow) depend strongly on geometry: SH and H₂O!
Bruderer et al. 2010