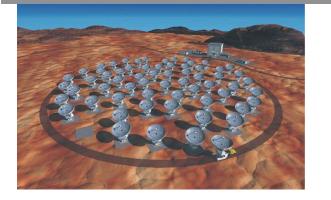
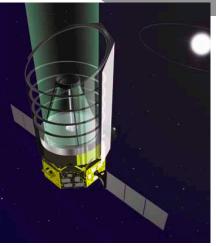


FIR TECHNOLOGY DEVELOPMENT

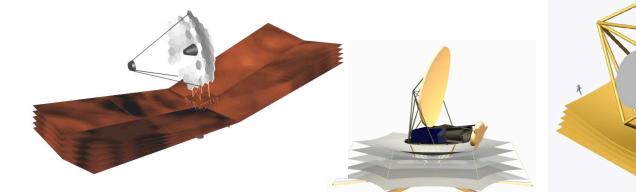

WHAT TECHNOLOGIES DO WE NEED FOR FUTURE (SPACE) FAR-INFRARED ASTRONOMY?

S. RINEHART

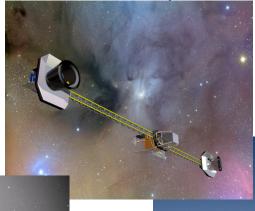
NASA'S GODDARD SPACE FLIGHT CENTER


MISSIONS & FACILITIES I

- BLAST (Devlin)



- SOFIA (20-22; Becklin, Benford, and Radford)
- SPICA (23-27; Nakagawa, Sugita, Bradford, Isaak, Tamura)
- ALMA (28; Wootten)
- Square Kilometer Array (29; Lazio)



THE UNICORNS

- SAFIR / CALISTO (30-32, 42; Lester, Goldsmith)
- SPIRIT (33; Leisawitz)
- CCAT (34; Radford)
- BETTII (35; Rinehart)
- Far-IR Survey mission (e.g. SIRCE)

Cornell Caltech Atacama Telescope

S. Rinehart Technology for the FIR

TECHNOLOGIES, PRIORITIZED (?)

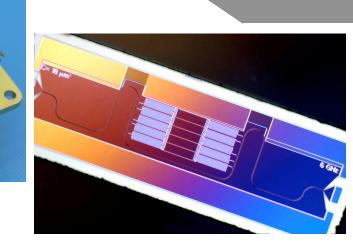
Technology (unique-ish to the FIR)

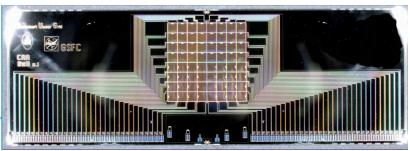
- Detectors
 - Homodyne (Bock, 38-41; Billot, Kenyon, Day, Echternach)
 - Heterodyne (Zmuidzinas)
- Cryocoolers
 - Subkelvin (36, Paine)
 - Instrument/Telescope cooling (Nakagawa)
- Cryo-Mechanisms (Lawson, 37; Silverberg)
- Cryo-Optics (Stahl)
 - Filters/Dichroics/Combiners

BROAD TECHNOLOGY NEEDS

Technologies needed more broadly:

- Metrology (Lawson)
- Modelling
- Large Structures
- Integration & Testing
- Formation Flying (Lawson)

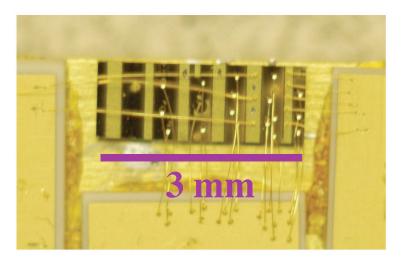



	Detectors: Homodyne	Detectors: Heterodyne	Subkelvin Coolers	Cryocoolers (Large)	Mechanisms (cryo)	Cryooptics	FIR Filters	Metrology	Structures	Integration & Test
SAFIR		?								Х
SPIRIT										Х
CCAT	?									
BETTII										
SIRCE				?	?					

DETECTORS: HOMODYNE

- TES bolometers
- MKIDs
- Photoconductors
- QCD (Quantum Capacitor)
- QWIP/QWISP
- Important elements: —Speed
 - Sensitivity
 - number of pixels
 - filling factor

S. Rinehart Technology for the FIR



DETECTORS: HETERODYNE

- NASA
- FIR receivers (THz) can be made significantly better than Herschel HiFi
 - Frequency range
 - Sensitivity

HP

Heat exchanger

J-T valve

BP

Cryocoolers needed for long life of future Compressor missions

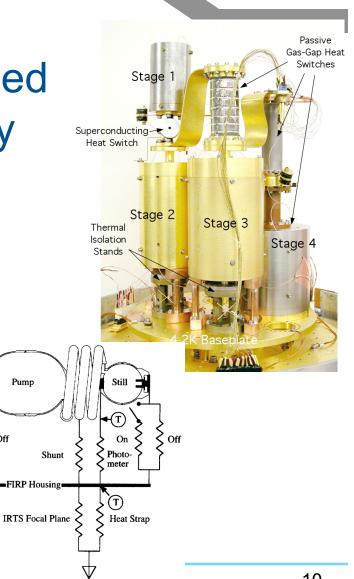
- Joules-Thomson coolers on JWST, Planck, etc.
- Stirling 2-stage on Akari

Continued development needed to provide maximum cooling for minimum weight, power, and complexity.

SUBKELVIN COOLERS

Subkelvin coolers have been demonstrated (overlapping need between the FIR and the X-ray astronomy communities)

- ADR: Suzaku
- ³He Coolers: IRTS, Herschel


May need more stages to lower detector temperatures ...

S. Rinehart Technology for the FIR

May 29, 2008

ξoff

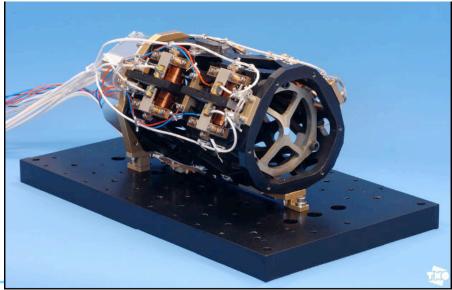
IRTS Cryostat



CRYOOPTICS

Making big mirrors is becoming "easy". Making them light still a challenge

- SPICA will demonstrate cold SiC mirror
- Major challenges not optical:
 Support structures
 - Cooling
- Validation via cryotesting

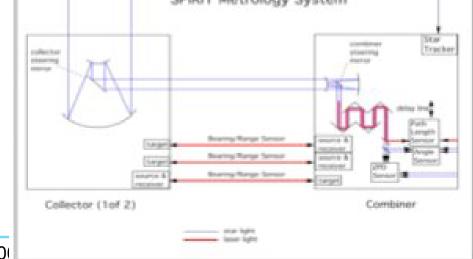

 Testing of large systems may be difficult/impossible.

MECHANISMS

Cryomechanisms have a long history. Millions of cycles of FTS on COBE.

- Most missions will need at least one cryomechanism. Particular challenges include:
- Accurate & smooth delay lines for interferometry
- Trolleys for boom interferometers
 Shared with TPF-I

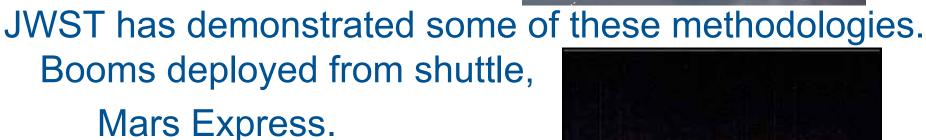
FIR FILTERS

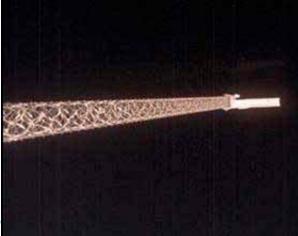

Future missions will need high-quality FIR filters

- Wiregrid filters from Cardiff currently SOA
- New work in the US on making high-quality FIR filters (NRL)

METROLOGY

- Metrology systems for single apertures developed for JWST (overkill for a deployed SAFIR)
- Metrology systems for interferometers developed (or in development) for SIM and TPF-I (overkill for FIR interferometers)


S. Rinehart Technology for the FIR

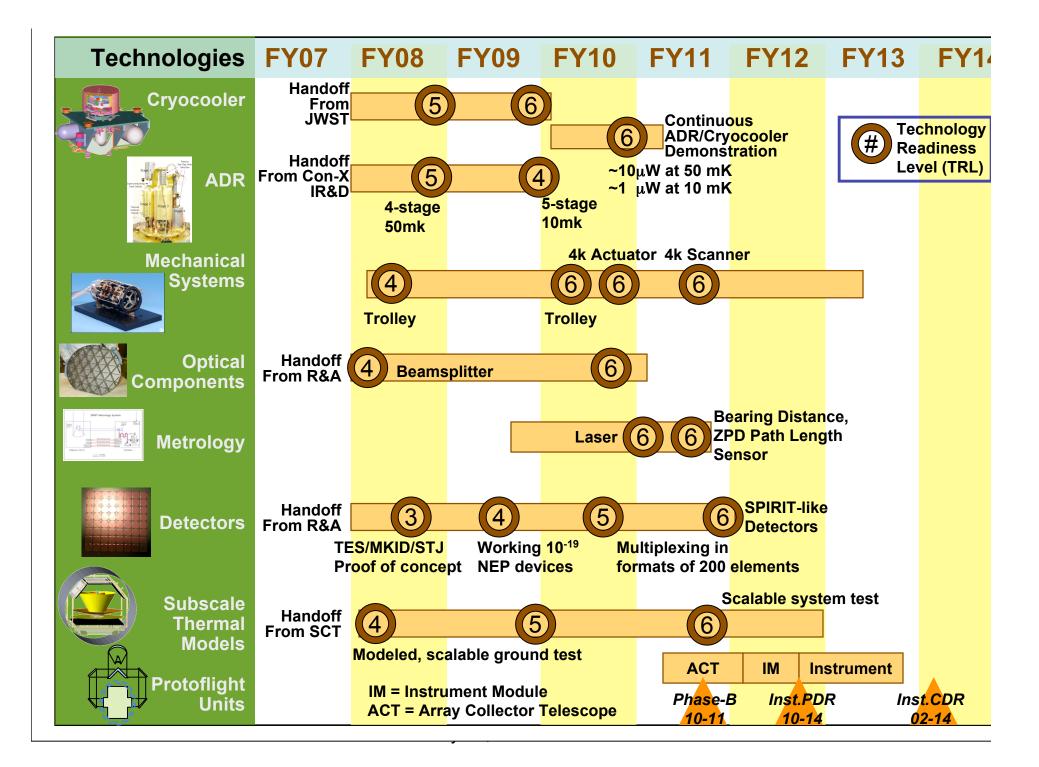

STRUCTURES

Nearly all future large missions require deployments.

- Sunshades
- Segmented mirrors
- Booms for interferometry

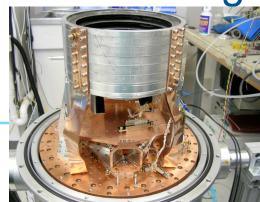


FORMATION FLYING


None of the near-term FIR missions require formation flying. However, developments for TPF-I may be of value for new future incarnations of SPECS. Formation Control Testbed

ARES V AND SERVICING

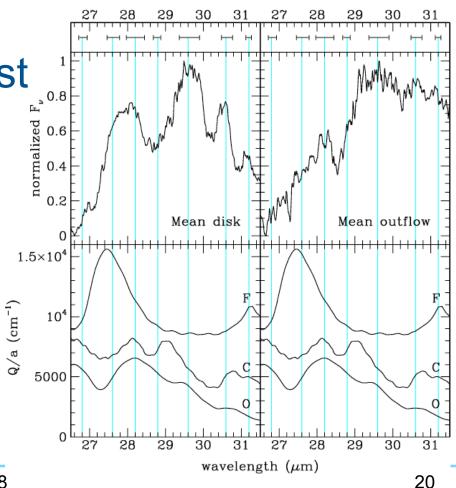
- Ares V is coming.
 - How can we take advantage of it?
 - Monolithic apertures cheaper than deployed (?)
- Serviceability?
 - Refueling? Instrument change-out?
 - Cryocoolers need to be designed for long life (closed-cycle)
 - Detectors must degrade slowly & gracefully



MORE WITH LESS

Ground-based, suborbital, and airborne projects provide key opportunities to:

- Test out new technologies, including coolers. detectors, etc.
- Help develop the expertise needed for future space missions
- Do some great science!



SUPPORTING WORK

Need support for theoretical work and for laboratory astrophysics:

 THz spectroscopy of dust & ice analogs (19; Gerakines)

S. Rinehart Technology for the FIR