# INFRARED <br> SPECTROSCOPY OF <br> GALAXIES 

PASt, PRESENT, FUTURE
JD SMITH
UNIVERSITY OF TOLEDO

## BURNING QUESTIONS ABOUT GALAXIES IN THE UNIVERSE

- What is The history of metal and dust PRODUCTION?
- What is the relative importance of ACCRETION VS. STAR FORMATION?
- HOW ARE GAS, DUST AND STARS ARRANGED IN GALAXIES (AND WHY)?


## FIRST (MIR, EXTRAGALACTIC, SPECTROSCOPIC) LIGHT

OBSERVATIONS OF M82 AND NGC 253 AT 8-13 MICRONS
F. C. Gillett

Kitt Peak National Observatory*
D. E. Kleinmann and E. L. Wright

Center for Astrophysics, Harvard College Observatory and Smithsonian Astrophysical Observatory AND
R. W. CAPPS

Kitt Peak National Observatory,* and Steward Observatory Received 1975 January 27; revised 1975 February 26

## $\lambda / \Delta \lambda \sim 50$ KPNO 2.1M,

Cooled Filter Wheel SPECTROMETER

GilLeTt ET AL., 1975


## FIRST (MIR, EXTRAGALACTIC, Spectroscopic) Light

OBSERVATIONS OF M82 AND NGC 253 AT 8-13 MICRONS
F. C. Gillett

Kitt Peak National Observatory*
D. E. Kleinmann and E. L. Wright

Center for Astrophysics, Harvard College Observatory and Smithsonian Astrophysical Observatory AND
R. W. Capps

Kitt Peak National Observatory,* and Steward Observatory
Received 1975 January 27; revised 1975 February 26
$\lambda / \Delta \lambda \sim 50$


The observations were made with the Kitt Peak National Observatory 2.1-m telescope, modified for use in the infrared, during 1974 April, May, and October.

Gillett et AL., 1975


8-13 $\mu$ SPECTROPHOTOMETRY OF NGC 1068


All of the models require a "silicate" absorption

Kleinmann, Gillett, And Wright, 1976


# $\lambda / \Delta \lambda \sim 100$ UKIRT, <br> <br> UCL SPECTROMETER 

 <br> <br> UCL SPECTROMETER}

Aitken, ROChe, AND Phillips, 1981

## ALONG CAME IRAS

LRS:<br>8-22 1 M<br>SLITLESS<br>GRISM, 5 PIXELS!



## ALONG CAME IRAS

ROCHE ET AL., 1991


## ISO: A SEA CHANGE



MOORWOOD ET AL., 1996

## ISO: A SEA CHANGE

Circinus Galaxy SWS + LWS


## SPITZER/IRS: CATHARSIS



## THE RICH IR SPECTRA OF

## GALAXIES

- Old Stellar PHOTOSPHERES.
- STOCHASTICALLY HEATED GRAIN CONTINUUM.
- STRONG AROMATIC EMISSION BANDS.
- THERMAL DUST EMISSION.
- Cooling lines of Hii regions, PDRs, high excitation AGN ENVIRONMENTS: 5150EV.


## The Top 10 Most Luminous Emission

 Lines Of Star-Forming Galaxies

WAVELENGTH ( H M) • LINE

## Emission <br> LINE ROADMAP



## H-LYMAN <br> HE-LYMAN

## EMISSION <br> LINE <br> ROADMAP



## DiAgnostics

## GAS

DENSITY


## Diagnostics

AGN VS. STARBURST


GENZEL ET AL., 1998


DALE ET AL., IN PREP

## Diagnostics

## AGN VS. STARBURST



SPOON ET AL., 2007

## PAH DIAGNOSTICS



SMITH ET AL, 2007

## PAH DIAGNOSTICS



SMITH ET AL, 2007

## KING PAH



WAVELENGTH ( HM ) •LINE

## KING PAH



WAVELENGTH ( $\mathrm{H} M$ ) • LINE

## I LOVE THE SMELL OF PAHS IN THE MORNING




YaN, 2005

# I LOVE THE SMELL OF PAHS IN THE MORNING 



VALIANTE ET AL, 2007

## THE DIAGNOSTICS DESERT

PACS Line Sensitivity, $5 \sigma$, 1 hr


## THE DiAgnostics Desert

PACS Line Sensitivity, $5 \sigma$, 1 hr


## The Humble Long Slit

- STABLE BACKGROUND, IMAGING AND DETECTOR PERFORMANCE + SUB-SLIT WIDTH SPACECRAFT POINTING:
- HIGH SPECTRAL MAPPING SPEED WITH LONG SLITS!
- SIMPLER OPTICS, SMALLER INSTRUMENT, EASIER TO CHARACTERIZE SLIT THROUGHPUT.
- SOME ADDITIONAL DATA COMPLEXITIES: EASILY HANDLED.




## NGC 1512

COURTESY JIM GEACH

## SNR CASA



## SNR CASA



## SNR CASA



## ONWARD, UPWARD

- INCREDIBLE DIAGNOSTIC POWER OF THE MID AND FAR-IR EMISSION OF GALAXIES, AS OF YET MINIMALLY EXPLOITED!
- PAH EMISSION: THE GIANT ELEPHANT IN THE ROOM.

COLD, LARGE APERTURE, MODEST RESOLUTION SLITS: INCREDIBLE POWER FOR BOTH POINTSOURCE AND MAPPING SURVEYS.


