The Chemistry and Physics of the Interstellar Medium

Edwin A. Bergin University of Michigan

Big Picture

- Spectrum of Far-IR emission we don't know what it looks like at high spectral resolution (an enabling goal)
- How do molecular clouds and stars form?

evolution of the cold neutral medium

- How do planets get water? track water throughout each phase
- What is the full extent of interstellar chemistry?
- Deuterium in the Galaxy (Universe)
- ★ Herschel and SOFIA are happening (pathfinders)
- \star Need to pay attention to ALMA's capabilities

Klessen et al. 2004 Where did the cloud come from?

l Jeans length

The Birth of Molecular Clouds

- Molecular clouds are formed from the atomic medium
- [C II] I58 μm is dominant coolant of CNM
- Primary coolants of cloud formation are found in the Far-IR
- Spectrally resolved observations can study the gas kinematics (Herschel/SOFIA)

Future

- Detect emission from H₂ formation? I(28 μm) ~ I0⁻⁸ ergs/s/cm²/sr (Takahashi et al. 2001)
- Far-IR peak of dust spectral energy distribution can study polarization
 - explore changes in magnetic field from the cloud to the filaments to inside cores
 - resolve the B-field in disks -- get at the mechanism of angular momentum transport

Turbulence

- Consensus emerging that turbulence and its decay are key to the formation of molecular clouds (McKee & Ostriker 2007; MacLow & Klessan 2004)
- Where does this energy go? Can we detect it?

Falgarone

- [C II] comparison of line profile between core and envelope (Hershel/SOFIA)
- ➡ Non-equilibrium chemistry (CH⁺ is one potential example)
- Can we resolve close to dissipation scale??? (will likely need FIR tracers, greater angular resolution, and high spectral resolution)

The ISM and Massive Star Formation

- Where is star formation in the Milky Way?
- Distribution of molecular gas in the Milky Way peaks at 5 kpc from G.C.
- Contains ~ $2 \times 10^9 M_{\odot}$
- Is the heart of star formation in the Galaxy
- also the location of infrared dark clouds (Simon et al. 2006).
- identified as the birth sites of stellar clusters (Rathborne, Pillai, Ragan)

Galactic Ring Survey: Jackson et al. 2006

- ALMA -- resolution comparable to current for local clouds
- JWST can study absorption at higher resolution
- BUT will not get all primary gas coolants (beyond CO)
 - Hershel and SOFIA can characterize these areas but not at the scale of clumping (below 3")
 - Fertile ground for future observatories (SAFIR/SPIRIT)

Massive Stars and the ISM

- Massive stars have a profound effect on the the surrounding gas.
 - Power photo-dissociation region -- main lines emit in far-IR (C II, O I, C I, high-J CO) domain of Herschel/SOFIA/ SPICA
 - PDR's are THE testbeds of the chemistry that ALMA will observe in protoplanetary disks -- what are basic rates of heating? cooling? freeze-out? need to test in ISM and extend to disks - we need Far-IR observatories to understand the birth of planets!

Comito et al. 2005: Orion Hot Core

Massive Stars: Hot Cores

Comito et al. 2005: Orion Hot Core

Herschel/SOFIA will provide complete chemical assays and constrain gas cooling in quiescent gas, shocks, pdrs....

Massive Stars: Hot Cores

Glycine

Widicus-Weaver, Blake

Pre-biotic Organics

Beuther et al. 2007

High Spatial Resolution is the Future - but ALMA

The Water Cycle

- the water cycle:
 - O I in the cold neutral medium
 - makes water on grains during cloud/core formation -- at T ~ 10 - 20 K
 - provide to disk as ice during collapse
 - water ice incorporated into planetesimals
 - \Rightarrow some returned to space eventually as O

The Water Cycle

- the water cycle:
 - ➡ O I in the cold neutral medium
 - makes water on grains during cloud/core formation -- at T ~ 10 - 20 K
 - provide to disk as ice during collapse
 - water ice incorporated into planetesimals
 - \Rightarrow some returned to space eventually as O

The Water Cycle

- the water cycle:
 - → O I in the cold neutral medium
 - makes water on grains during cloud/core formation -- at T ~ 10 - 20 K
 - provide to disk as ice during collapse
 - ➡ water ice incorporated into planetesimals
 - \Rightarrow some returned to space eventually as O
- Both ground- and space-based instruments are needed to understand where water is throughout star formation -- AND how it gets into planets

Initial Steps of Water Cycle

Gas-Phase Chemistry atOT < 100 K</td>

Melnick and Bergin 2005

Water Vapor in Space

Water in Space

- In dense (n > 10⁵ cm⁻³) cores of molecular clouds
 - surface chemistry creates water ice
- $H_2O_{ice}/H_2O_{gas}\sim 10^4$
- More recent models suggest water vapor emits from UV exposed surface
- Herschel! -- observe numerous transitions of ortho and para water

Bergin et al. 2000

Initial Steps of Water Cycle

- ISO observations of atomic oxygen in emission and absorption infer large O I/CO ratios (Lis et al., Vastel et al., Caux et al., see also Poglitsch et al.)
- implies most oxygen in atomic form in dense regions in direct conflict with interpretation of water observations.
- SOFIA/GREAT can spectrally resolve atomic oxygen lines to use line profile to aid in determining emissionabsorption origin

Water in Disks

- Most of the water is frozen in planet forming disk
- ALMA can do HDO and H₂¹⁸O - compare to comets and Earth water
- ALMA cannot observe H₂¹⁶O
 ¹⁶O/¹⁸O may vary in the disk link to planets and meteorites (Herschel/SPICA)
- need to resolve inside the "snow-line" (JWST 6µm in transition systems), but need sub-arcsec resolution to resolve thermal emission, sensitivity for isotopic species

Planet Formation

- how do planets get water?
 - simulations ("Nice" model) suggest that comets may not play a major role
 - icy planetesimals from outer asteroid belt or from hydrous minerals
 - far-IR has bands of hydrated silicates -- high angular resolution can resolve where they form in the disk

 how do gas disks dissipate?
spectrally and spatially resolved [C II] and [O I] may be the best tracers of disk dissipation flows!

- can trace evaporated water ice determine o/p and D/H ratio
- get cooling and chemistry of star formation
- Herschel initial surveys both heterodyne and direct detection -SPICA more sensitivity - lower mass sources?
- SAFIR/SPIRIT: better resolution -- closer in to the star (better tests of physics) and more distant stellar clusters

- Observations: typically do not detect hot abundant water
- SWAS, ODIN, and ISO find at least an order of magnitude below expectations (except in a handful of sources)

Water in Shocks

Tappe et al. 2008

HH-211

Super-Thermal OH

Water in Shocks - need OH

Rotational State of OH from H₂O + $h\nu \rightarrow OH + H$

Harich et al. 2000

Water in Shocks - need OH

- Near/Mid Term Future
 - Herschel/SPICA OH/ H₂O in a range of outflows
 - SOFIA spectrally resolved O I -- where is the OH going?
 - Herschel/SOFIA [C II] line wings as tracer of UV
 - ➡ JWST observing OH J > 69/2 (Spitzer SH limit)

Rotational State of OH from $H_2O + hv \rightarrow OH + H$

Harich et al. 2000

$H_2 S(3)$ in NGC1333

31°20'00''

- ALMA...
- Future for the 5 31°15′00″ Far-IR - resolving shocked knots (< I" resolution)

Deuterium In the Galaxy

- Important as a relic of the big bang
 - test of stellar nucleosynthesis
- chemical fractionation occurs at low T -- used as a fossil for past history of physical conditions
 - ➡ holds clues to origins of Earth's water
- ALMA, Herschel, and SOFIA will open this up for numerous species including HDO, DCO⁺, DCN, HDCO, NH₂D, NHD₂, ND₃, ...
- Mid and Far-IR offers direct observations of HD pure rotational lines
 - Complicated by strong (often optically thick) continuum

Deuterium In the Galaxy

- Herschel/SOFIA (in particular GREAT) can extend FUSE results to the center of the Galaxy
- If we know the HD/H₂ ratio then HD is a direct tracer of gas mass!
 - does not freeze-out (like CO)

Summary

- In 5 years we will know the far-IR sky much better than we do today - but there will be surprises....
- Obvious part unexplored scientific terrain requires high resolution imaging (~I" or less)
- Play to our strengths:
 - peak of SED (structure, dust temp, polarization)
 - primary coolants of early phases of cloud/star/planet formation (shocks, finals stages of disk evolution)
 - ➡ water, water, water
 - extent of interstellar chemistry
 - → main reservoir of deuterium (HD) tracer of mass
- for ISM science high spectral resolution is critical

- [C II] I 58 μm is dominant coolant of CNM
- Herschel and SOFIA can observe C II with high spectral resolution
- How much C II emits from CNM (use HI)
- Search for H₂ clouds with no CO?

The Beginnings of Star Birth

- Stars older than ~5-10 Myr are unassociated with molecular gas.
- Implies that star formation is fast and is linked to cloud formation
- Star formation must proceed shortly after cloud is born

	2019/2019/04/04 1821	
Table 1		
Star forming regions		
Region	< t > (Myr)	Molecular gas?
Coalsack	_	yes
Cha III	?	yes
Orion Nebula	1	yes
Taurus	2	yes
Oph	1	yes
Cha I,II	2	yes
Lupus	2	yes
MBM 12A	2	yes
IC 348	1-3	yes
NGC 2264	3	yes
Upper Sco	2-5	no
Sco OB2	5-15	no
TWA	~ 10	no
η Cha	~ 10	no

Hartmann et al. 2001

Chemistry - the limiting factor

- form molecular clouds need to make molecules
 - H₂ on grains (limiting factor grain collision timescale - see Goldsmith et al. 2007)

$$\tau_{H_2} \sim 2 \times 10^9 \text{ yr} \left(\frac{T}{10 \text{ K}}\right)^{-0.5} \left(\frac{1 \text{ cm}^{-3}}{n}\right)$$

Chemistry - the limiting factor

- form molecular clouds need to make molecules
 - ➡ H₂ on grains (limiting factor grain collision timescale see Goldsmith et al. 2007)

$$\tau_{H_2} \sim 2 \times 10^9 \text{ yr} \left(\frac{T}{10 \text{ K}}\right)^{-0.5} \left(\frac{1 \text{ cm}^{-3}}{n}\right)$$

supernova, cloud-cloud collision

Chemistry - the limiting factor

- form molecular clouds need to make molecules
 - ➡ H₂ on grains (limiting factor grain collision timescale see Goldsmith et al. 2007)

$$\tau_{H_2} \sim 2 \times 10^9 \text{ yr} \left(\frac{T}{10 \text{ K}}\right)^{-0.5} \left(\frac{1 \text{ cm}^{-3}}{n}\right)$$

supernova, cloud-cloud collision

OR - H₂ is pre-existing (Allen, Pringle) -- this needs to be tested - need sensitive receivers to search for [C II] or [C I] with little H I (other galaxies?)