Complex structure in the cool ISM in the Galactic plane: Protostars and what comes before P. G. Martin **CITA** and **Department of Astronomy and Astrophysics University of Toronto** and the **BLAST** collaboration **Precursor to observations with** Herschel/SPIRE (GT and OT – HiGAL) and SCUBA2 (JPS, GBS) Pasadena, 30 May 2008

Balloon-borne Large Aperture Submillimetre Telescope

BLAST: Submillimetre IMAGING

Three-colour camera almost identical to the **SPIRE** camera on *Herschel* : 43, 88 and 149 detectors, respectively, at

500, 350, and 250 μ**m**.

Unique spectral coverage close to the peak of the spectrum of cool dust emission $\rightarrow \rightarrow \rightarrow$ excellent determination of T, bolometric flux, and mass of compact sources.

BLAST reveals previously-unseen cold dust.

BLAST/Herschel: SED in submm Good definition of BG temperatures

BLAST05: Submm IMAGING

BLAST05 was out of focus → extragalactic science goals abandoned, but lots of Galactic results.

Have recently improved all of these maps using Lucy-Richardson deconvolution, enhancing the derived science.

(Arabindo Roy)

BLAST: a survey instrument

One of the regions of high mass star formation surveyed by BLAST05 was Cyg X: AREA ~4 X 3 = 12 square degrees.

(One of the great features of BLAST was the ability to survey large regions. Will show a region ~50 sq. degrees in Vela Molecular Ridge, done during the Antarctic flight, BLAST06).

For Cyg X will first show a multiwavelength, hence multispecies view (from CGPS) to reveal how complex and information rich is this ISM discipline, and the unique contributions of BLAST.

J. English/Canadian Galactic Plane Survey (CGPS)

Radio continuum – DRAO ST 21 cm

PAH emission – 8.6 micron MSX

60 micron IRAS (HIRES)

100 micron IRAS (HIRES)

100 micron – IRIS (original)

250 micron – BLAST

PAH emission – 8.6 micron MSX

Radio continuum 21 cm

250 micron – BLAST

Measures of Column Density

<u>Dust emission</u> measures column density of dust, modulated by dust temperature T: $I_v = \kappa_v B_v(T)$ Dust/Gas $\mu m_H N_H = \tau_v B_v(T)$.

Extinction also measures column density:

 $A_{v} = (A_{v}/N_{H}) N_{H},$

as does the <u>integrated line intensity of CO</u>: W(CO) = $(2 \times)^{-1} N_{\mu}$.

250 micron – BLAST

Extinction from HK star counts

12CO(1--> 0) from FCRAO (Brunt)

250 micron – BLAST

3 colour – BLAST + IRAS

Red 500 Green 250 Blue 100 µm

Radio continuum 21 com

Warmer dust (blue) associated with H II regions.

Infrared dark clouds – 8.6 µm MSX IRDCs can be stellar nurseries – poster by Carey.

Contours of 21-cm continuum: a compact HII region.

Warm and cold dust – BLAST Cold cores with adjacent stellar activity.

0

Compact H II region →

Some with warm central region.

Cyg X Survey – 170 compact sources

To quantify the dust temperature, measure the SED using as many frequencies as possible. e.g., to BLAST add IRAS on the high side, and SCUBA, Mambo and **Bolocam on the low side.**

Arabindo Roy

SED **BLAST** frequencies are ideally placed to constrain the dust temperature, especially cool dust.

Luminosity and mass

Large range.

Protostars \rightarrow warmer dust and higher luminosity.

Cores preceding massive star "formation" are cool and have a low luminosity.

Luminosity and Mass: evolution

Luminosity and Mass in Cyg X

Future

Herschel will have a smaller beam, and will make deeper maps. Some regions will be relatively nearby, allowing probe to lower masses at higher spatial resolution.

Limiting factors, beyond detector noise

Interstellar "froth" – cirrus confusion. Can estimate using power spectrum.

Source confusion.

Power spectra in Cyg X

BLAST06

BLAST06, from Antarctica, had a very successful 11-d flight.

Devoted mostly to extragalactic science (talk by Mark Devlin).

Made some spectacular observations in the Galactic plane.

Vela molecular ridge – 50 sq. deg.

Found a large range of conditions, including a massive molecular cloud (Vela C) in which very little star formation has occurred yet. Yet there are many cold cores.

We can quantify the conditions (size, mass, temperature, even lifetime) that lead to star formation.

Vela C – 250 µm, 3 by 2 deg cutout

In focus!

2

0.5

266.5

265.5

266

265

264.5

264

BLAST: 3-colour Vela image, 50 sq. d

Netterfield et al. (2008) will present some highlights.

Vela C, 3-colour BLAST image

Luminosity and Mass in Vela C

Vela Survey (detail, 1 sq deg)

Vela Survey (detail, 4 sq deg)

Vela Survey (detail, 3 by 4 deg)

Vela 3-colour BLAST image

The work has just begun...

