

Universe -13.7 billion years WMAP → Planck

H₂ in Galaxy Formation François Boulanger IAS, Orsay

Galaxies today : IR Hubble tuning fork Spitzer → Herschel

The Spitzer Infrared Nearby Galaxies Survey (SINGS) Hubble Tuning-Fork

Outline

 \Box H₂ and the energetics of Galaxy Formation

 \Box What we are learning from Spitzer H₂ observations of Local Universe galaxies

Beyond Spitzer:

The distance universe through the active era of galaxy build-up $(z \sim 2)$ to the early steps (z > 5, Phil Appleton's talk) of galaxy formation

Collaborators:

P. Guillard (PhD student), G. Pineau des Forets, N. Nesvadba (IAS, Orsay), E. Falgarone (Obs. Paris), L. Kristensen (Leiden)
P. Appleton (NSHC), P. Ogle (SSC) (see his poster)

Galaxies on the Cosmic Web

Dark matter → Numerical simulations & weak lensing

> Where and When do galaxies form $? \rightarrow$ Multi-wavelength photometric surveys

>How ? \rightarrow Heating and cooling of baryons in relation with gas accretion, galaxies interaction/merging & star formation and AGN feedback

→ Energetics of the cold gas which concentrates in galactic disks to form stars

Observations \Leftrightarrow **Questions**

- Massive galaxies form early
- Their mass scales with that of their central Black Hole
- Galaxy formation is inefficient
 - Massive galaxies stop growing after concentrating a minor fraction of the available baryonic mass
 - There are much fewer small galaxies than small dark matter halos
 - Baryonic mass in galaxies is only 8 % of the total

Molecular Gas \rightarrow Star Formation

Kennicutt et al. 1998

Global Schmidt law in star forming galaxies

• Star formation rate:

 $\Sigma_{\rm SFR} = 2.5 \ 10^{-10} \ {\rm M_o} \ {\rm yr^{-1}} \ {\rm pc^{-2}} \ (\Sigma_{\rm g}/{\rm M_o} \ {\rm pc^{-2}})^{1.4}$

• Star formation time scale:

 $t_{SF} = \Sigma_{g/} \Sigma_{SFR} = 10^9 \text{ yr} (\Sigma_g/ 30 \text{ M}_o \text{ pc}^{-2})^{0.4}$ Miliky Way : $t_{SF} = 10^9 \text{ yr}$ In ULIRGS : $t_{SF} < 10^8 \text{ yr}$

Two distinct H₂ tracers

 \rightarrow Cold H₂

 \rightarrow Warm H₂

Observatories

IRAM, CARMA ... ALMA interferometer

H2

ISO 1995-1997 **R=2000**

20"

Spitzer 2003-2009 **R=80 - 600** 5-10"

... SPICA, CALISTO, SAFIR

Warm H₂ thermometer

Critical density H₂ rotational lines

• The lowest J transitions are thermalized at molecular cloud densities

→ They trace molecular gas energetics

H₂ Luminous Galaxies

→ Population of H_2 luminous galaxies with no or relatively weak star formation that includes AGNs, radio galaxies, cooling flows in clusters, ellipticals, interacting/merging systems From 10⁷ to 10¹⁰ M_☉ of warm (T ≥150 K) H₂

H₂ in Galactic winds

M82: Optical

Spitzer, 3.5 - 8µm

→ M82 wind holds dust and H2 gas (Engelbracht et al. 2006 & Armus et al/)

H α **image** Conselice et al. 2001

Perseus cluster cooling flow

Molecular gas filaments are formed in cooling flows

Galaxy Collision

Galaxy-wide shock created by a 1000 km/s collision betweena galaxy and a tidal tail

- $L_{H2} > L_{X-ray}$
- H₂ line width ~ 1000 km/s
 Appleton et al. 2006

Galaxy wide shocks

 \rightarrow Galaxy wide shock create a multiphase medium with H₂ gas embedded in hot X-ray emitting plasma

Powering the H₂ emission

→ Cooling time of warm H_2 is ~10⁴ yrs => Need continuous energy supply

 \rightarrow Distinct H₂ luminous galaxies have similar H₂ SEDs

Energy flow in multiphase medium

□ Bulk kinetic energy reservoir $E_B >> E_T$, $E_W => t_B >> t_T$, t_C □ In Stefan's quintet:

- $E_B \sim E_H$ and $L(H_2)$ is a few times $L(X_{rays})$
- H₂ gas and hot plasma « cooling time » $t_C \sim 10^8$ yrs

H₂ in galaxy build-up

Elementary steps in galaxy evolution

- > Accretion: from the intergalactic medium/galaxy halo
- Feedback: Gas ejection powered by star formation and the central black hole
- **Galaxy interactions:** collisions and merging
- \rightarrow Multiphase medium with H₂ gas embedded in hot plasma
- → The gas bulk kinetic energy sustains molecular gas turbulence
- \rightarrow Turbulence dissipation powers H₂ emission
- \rightarrow Dissipation controls the H₂ gas evolution towards star formation

H₂ beyond Spitzer

→ Tracing the energetics of Galaxy Formation through the active galaxy build-up era (z~2) to the early steps at z>5

Background sensitivity limit

→ Sensitivity of 10^{-21} W/m² achievable with SPICA with 10^{-19} W/Hz^{0.5} NEP detectors

Conclusions

 H_2 Spitzer observations reveal large quantities of dynamically energized molecular gas out of star forming galactic disks, powered by gas accretion, star formation and AGN feedback, and galaxy interactions.

H₂ rotational line emission is a unique tracer of Galaxy
 Formation Energetics: the energy released by accretion and feedback & its dissipation

Observation of redshited H₂ lines is a main science driver for future far-IR Space missions

✤ Active telescope cooling and a new generation of sensitive far-IR detectors (NEP < 10^{-19} W/Hz^{0.5}) will provide the needed sensitivity → SPICA, CALISTO, SAFIR ...