The Dust Properties of Typical Star-Forming Galaxies at High Redshift

Naveen Reddy (UCR)

Through the Infrared Looking Glass, Pasadena, CA, 03 October 2011

Some Context: Demographics of z~2-3 Galaxies

Meurer+99; Calzetti+00

Correlation between 8 micron and Ha

Remarkable similarity in ratio of small to large dust grain emission in galaxies over past 10 billion years

Herschel Stacking Method

- Stacked spectroscopically confirmed UV-selected galaxies at redshifts 1.5<z<2.6 in GOODS-North field
- Removed AGN based on presence of optical emission lines and/or power-law SED through the IRAC bands and very high 24 micron flux (>~100 µJy)

Median Dust SED of $L^{*}(UV)$ galaxy at $z\sim 2$

	Comparison of Infrared Luminosities $(L_{\rm IR})^{-a}$							
	Template	$\lambda, u^{ m b}$	Samme A	Sample B	Sample C	Sample D	Sample E	Sample F
	R10a $^{\rm c}$	24	2.0 ± 0.3	1.8 ± 0.1	1.2 ± 0.2	2.7 ± 0.2	15.7 ± 0.5	0.3 ± 0.1
	Bell03 ^d	1.4	2.2 ± 0.5	2.2 ± 0.4	1.7 ± 0.6	2.9 ± 0.8	7.9 ± 1.7	3σ : < 3.0
	Elbaz+11-MS Lum $^{\rm e}$	24 100	1.9 ± 0.2 3.0 ± 0.4	1.6 ± 0.1 2.9 ± 0.5	1.2 ± 0.1 2.0 ± 0.6	2.2 ± 0.2 3 8 ± 0.7	9.0 ± 0.3 12.7 ± 1.4	0.5 ± 0.1
		160	3.0 ± 0.4 3.0 ± 0.4	2.3 ± 0.6 2.4 ± 0.6	2.0 ± 0.0 2.1 ± 0.6	2.9 ± 0.9	12.7 ± 1.4 11.1 ± 1.7	1.7 ± 1.1
		100, 160 24, 100, 160	3.0 ± 0.3 2.2 ± 0.2	2.7 ± 0.4 1.7 ± 0.2	2.1 ± 0.4 1.2 ± 0.2	3.5 ± 0.5	12.0 ± 1.0	$3 \sigma: < 2.8$
		24, 100, 100 24, 100, 160, 1.4	2.3 ± 0.3 2.3 ± 0.3	1.7 ± 0.2 1.7 ± 0.2	1.3 ± 0.2 1.3 ± 0.2	2.3 ± 0.3 2.3 ± 0.3	9.2 ± 0.4 9.2 ± 0.5	$3\sigma: < 2.8$ $3\sigma: < 2.8$
	Elbaz+11-MS Lum-Eq Weight $^{\rm f}$	24, 100, 160, 1.4	3.0 ± 0.2	2.5 ± 0.2	2.1 ± 0.2	3.0 ± 0.2	11.3 ± 0.3	3σ : < 2.8
	Elbaz+11-SB Lum ^e	24	3.7 ± 0.5	3.1 ± 0.2	2.3 ± 0.3	4.3 ± 0.4	17.7 ± 0.5	1.0 ± 0.2
		$100 \\ 160$	2.4 ± 0.3	2.3 ± 0.4	1.6 ± 0.5 1.7 ± 0.5	3.0 ± 0.5	10.0 ± 1.1	$3\sigma: < 2.2$
Radio-IR correlation:		100, 160	2.3 ± 0.3 2.4 ± 0.2	1.9 ± 0.3 2.1 ± 0.3	1.7 ± 0.3 1.6 ± 0.3	2.3 ± 0.7 2.7 ± 0.4	8.0 ± 1.3 9.4 ± 0.9	1.3 ± 0.9 $3\sigma: < 2.2$
Elbor 11 tomplator		24, 100, 160	2.6 ± 0.3	2.7 ± 0.3	2.0 ± 0.3	3.6 ± 0.4	15.5 ± 0.7	$3 \sigma: < 2.2$
Elbaz+11 templates,		24, 100, 160, 1.4	2.6 ± 0.4	2.6 ± 0.3	2.0 ± 0.4	3.5 ± 0.5	15.0 ± 0.8	3σ : < 2.2
CE+01, DH+02,	Elbaz+11-SB Lum-Eq Weight ¹	24,100,160,1.4	2.3 ± 0.2	2.0 ± 0.1	1.7 ± 0.2	2.4 ± 0.2	8.8 ± 0.2	$3 \sigma: < 2.2$
Rieke+09	CE01 Lum ^e	24	3.4 ± 0.4	2.6 ± 0.2	1.7 ± 0.2	4. 4.3	S1m1	0.1 ± 0.1
		100	2.4 ± 0.3	2.3 ± 0.4	1.6 ± 0.5	3.1 ± 0.6	10.9 ± 1.2	$3 \sigma: < 2.3$
		$160 \\ 100 \\ 100$	2.2 ± 0.3	1.8 ± 0.4	1.5 ± 0.4	2.1 ± 0.6	7.9 ± 1.2	1.2 ± 0.8
		24 100 160	2.3 ± 0.3 2.4 ± 0.3	2.0 ± 0.3 2.3 ± 0.3	1.0 ± 0.3 6 ± 0.3	2.7 ± 0.4 3.3 ± 0.4	9.4 ± 0.9 12.3 ± 0.4	$3\sigma < 2.3$ $3\sigma < 2.3$
		24, 100, 160, 1.	2.4 ± 0.4	2.3 ± 0.3	1.6 ± 0.4	3.2 ± 0.4	12.1 ± 0.6	$3 \sigma: < 2.3$
	CE01 Lum-Eq Weight ^f	24, 100, 160, 1.	2.2 ± 0.2	1.8 ± 0.1	1.5 ± 0.2	2.3 ± 0.2	8.2 ± 0.2	3σ : < 2.3
Different	CE01 Col ^g	100, 160	2.1 ± 0.4	1.8 ± 0.5	2.1 ± 1.0 1.6 ± 0.0	1.7 ± 0.6	7.9 ± 1.5	
Different	 CE01 Col-Ea Weight ^h	24, 100, 100 24, 100, 160, 1	2.3 ± 0.0 2.4 ± 0.7	2.2 ± 0.8 2.2 ± 0.8	1.0 ± 0.9 1.6 ± 0.9	3.0 ± 1.2 3.0 ± 1.2	10.4 ± 2.3 12.1 ± 2.7	
combinations of	DH02 Lum ⁶	24, 100, 100, 1.	2.4 ± 0.1	2.7 ± 0.0	1.0 ± 0.0	3.0 ± 1.2	12.1 ± 2.1	0.6 ± 0.1
Spitzer / Herschei /	DH02 Lum	$\frac{24}{100}$	3.0 ± 0.4 2.1 ± 0.3	2.3 ± 0.2 2.0 ± 0.4	1.7 ± 0.2 1.5 ± 0.5	3.0 ± 0.3 2.7 ± 0.5	21.5 ± 0.0 7.8 ± 0.9	$3\sigma < 2.0$
VLA data		160	2.2 ± 0.3	1.8 ± 0.4	1.6 ± 0.4	2.1 ± 0.6	7.4 ± 1.2	1.3 ± 0.9
		100, 160	2.1 ± 0.2	1.9 ± 0.2	1.5 ± 0.3	2.5 ± 0.4	7.7 ± 0.6	$3 \sigma: < 2.0$
		24, 100, 160 24, 100, 160, 14	2.3 ± 0.3 2 3 \pm 0 3	2.2 ± 0.2 2 2 ± 0 3	1.6 ± 0.2 1.6 ± 0.3	3.0 ± 0.4 3.0 ± 0.5	13.6 ± 0.7 13.2 ± 0.8	$3\sigma < 2.0$
	 DH02 Lum-Eq Weight ^f	24, 100, 100, 1.4 24, 100, 160, 1.4	2.3 ± 0.3 2.2 ± 0.2	1.8 ± 0.1	1.6 ± 0.2	3.0 ± 0.0 2.2 ± 0.2	7.4 ± 0.2	$3\sigma: < 2.0$ $3\sigma: < 2.0$
	DH02 Col ^g	100, 160	2.2 ± 0.4	1.5 ± 0.5	1.7 ± 0.7	1.7 ± 0.6	6.9 ± 1.3	
		24, 100, 160	2.4 ± 0.7	2.1 ± 0.7	1.5 ± 0.8	2.8 ± 1.1	10.5 ± 2.4	
	DH02 Col-Eq Weight "	24, 100, 160, 1.4	2.3 ± 0.6	2.2 ± 0.8	1.6 ± 0.9	3.6 ± 1.5	9.5 ± 2.2	
	Rieke+09 Lum ^e	24	5.0 ± 0.6	3.6 ± 0.3	2.0 ± 0.2	6.1 ± 0.5	46.1 ± 1.3	0.5 ± 0.1
		100	2.5 ± 0.3 2.2 ± 0.3	2.3 ± 0.4 19 ± 0.4	1.8 ± 0.6 1.7 ± 0.5	3.0 ± 0.5 2.1 ± 0.6	8.2 ± 0.9 6 1 ± 0 9	$3 \sigma: < 2.3$ $1 4 \pm 1 0$
		100, 160	2.2 ± 0.3 2.3 ± 0.2	2.1 ± 0.2	1.7 ± 0.0 1.7 ± 0.2	2.1 ± 0.0 2.5 ± 0.3	7.1 ± 0.6	$3 \sigma: < 2.3$
		24, 100, 160	2.3 ± 0.2	2.3 ± 0.3	1.8 ± 0.3	3.1 ± 0.4	11.2 ± 0.7	3σ : < 2.3
	 Dislas I 00 Laura E. W. 1 I f	24, 100, 160, 1.4	2.3 ± 0.3	2.3 ± 0.3	1.8 ± 0.4	3.0 ± 0.5	11.0 ± 0.9	$3 \sigma: < 2.3$
	Rieke+09 Lum-Eq Weight * Bieke+09 Col ^g	24, 100, 160, 1.4 100 160	2.2 ± 0.2 3.1 ± 0.6	1.9 ± 0.1 2.8 + 0.8	1.7 ± 0.2 2.4 ± 1.3	2.2 ± 0.2 3.6 ± 1.3	0.3 ± 0.2 12.5 ± 2.7	3σ : < 2.3
		24, 100, 160	1.7 ± 0.0	2.4 ± 0.8	1.8 ± 1.0	3.2 ± 1.3	11.9 ± 2.7	
	Rieke+09 Col-Eq Weight $^{\rm h}$	24, 100, 160, 1.4	2.6 ± 0.7	2.3 ± 0.8	1.8 ± 0.9	3.1 ± 1.2	12.1 ± 2.7	

TABLE 1 Comparison of Infrared Luminosities $(L_{\rm IR})^{\rm a}$

UV Faint Galaxies Are Less Bolometrically

Luminous on Average...

Effect of Dust on the Galaxy Luminosity Function

Dust affects UV LF and therefore our interpretation of how it evolves with redshift

Redshift Evolution of Dust Extinction

• Tight relation between L(bol) and dust

• At fixed L(bol), z~2 galaxies less dusty than z~0 galaxies

• Evolution in extinction per unit SFR due to increasing dust-to-gas ratio?

Reddy+10, Buat+08, Burgarella +08, Daddi+07, Zoran+06, Adelberger & Steidel 2000, Reddy +06, Wang & Heckman 96,

Z>>2 UV Dropout selections are likely to be more complete for high SFR galaxies (if they exist) than inferred from local observations

Physical Mechanism behind L(bol) vs. Dustiness Relation

Evolution of L(bol) vs. Dustiness relation directly tied to metallicity evolution

Conclusions

- FOCUS: bring multi-wavelength information we have for high redshift galaxies into a coherent picture for the evolution of dust with galaxy luminosity and redshift:
- L* galaxies at z~2 are LIRGs (~2e10 Lsun)
- Dust attenuation of UV-bright galaxies ~4-5, similar to prediction from the UV slope
- Dust limits the maximum UV luminosity of star-forming galaxies, thus affecting the shape of the UV luminosity function
- Evolution of extinction per unit star formation rate, likely tied to a change in metallicity as galaxies age