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Outline

®  What are FeLoBALs?

® A physical model of FeLoBALs: 1e Quasars

= formation in situ at R~kpc
(physically distinct from most, high-ionization BALs)

= radiative shocks in cloud crushing

* Implications for QSO feedback Urry & Padovani 95



What are BALs!?

®  Broad absorption lines in QSOs:
=  usually high-ionization SilV, CIV
=  blue shifted v~10,000 km/s, Av~1,000s km/s = AGN outflows
=  R=sl| pc (variability) = accretion disk winds (Murray+95)

o

Seen in ~20% of QSOS (up to 40% in IR-selected samples)

Trump+06




What are FeLoBALs?

®  Subset of QSO BALs

= absorption by low-ionization SDSS |03 18-0600

species, including Fell

= |ower v~1,000-10,000 km/s,
Av~100s km/s

° Rare: D e e e e e
=  only ~1/500 of optical QSOs *:
have FeLoBALs (~1%in IR)
®

No real theory



FeLoBALs are particularly well-suited for
photoionization modeling

®  Fine structure lines of Fell and Hel have orthogonal

dependences on n, and T

® | 046.7-47.7

erg s”') + photoionization

. diagnostic for QSO 2359-1241
modeling (Cloudy) have revealed (Moe+09, Duns< | Exststor 10):
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FeLoBAL must form in situ,
at R~kpc from SMBHs

® If FeLoBALs traveled from the SMBH to their implied location...

R R v -
taow &~ — &~ 3 x 10°
& v . yr (3 kpc) <10,000 km sl)

®  But destroyed by hydro instabilities and thermal evaporation in

tiy ~ 630K yr

tevap ~= 6 X 10° VT

CAFG, Quataert, & Murray,



Radiative shock model outline

®  FelLoBALs can form in situ via interaction of a quasar blast wave
with an interstellar gas clump
Tsh~Vsp? O O Tsh~Vsh?
%
O C? O
O nHC'f ch
anre, Tpre
ShOd.( wave propagates.in cloud on At t>tkH, tdrag, original cloud is shredded
QSO blast wave encounters moderately crushing time tcc, cloud is destroyed into cloudlets traveling at ~vsh and

dense ISM cloud. by K-H in tkH~20tc, and is accelerated

_ compressed by hot post-shock gas.
to ~vsh In tdrag.

CAFG, Quataert, & Murray, submitted



Cloud crushing by shocks,
Kelvin-Helmholtz instability

®  Well-studied problem for SNRs (e.g, Kiein+94, Mellema+02, Cooper+09)

COOPFPER ET AL .

y
0
Beub00u NRRAS000 4 WREL L0004 NN T
DUOONOVONDUOUONONONDUONONOVON
0
W

tKH ~ /{tcc
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Requirements for producing FeLoBALs
in radiative shocks explain observed properties

®  Acceleration, cold

t%.arflg < Z';I<I—I > 20 —9 USh 4.2
tecool < Tec = NH ~ 107 cm 5, 000 km s—!
®  Post-shock
compression: T
BAL sh 4 -3
ng N4n%re(104 K) ~ 10% cm

CAFG, Quataert, & Murray,



Other FeLoBAL model successes

2 BAL
Fell selects VH X Lbol/R ny

— | Q467477

~ 1073 — 1072

R~kpc in bright L, erg s QSOs analyzed

Shredding of ISM clump

BAUTISTA ET AL. Vol. 713

> Cotumn Do

= multiple components at same R,
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to-noise data allowed

to measure the col
S unblended S

mn densities from
in QSO 23591241 and 11 components

. For the latter, though. only the strongest

= - in SDDSS JO318.
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all other components had to be measured as a single blended
° ° - enever possib >1 ies we de-
- E >ugh three v i
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as ment, i
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The measured column densities f

the observed components

and 2,

in Qso

23501241
respectively.

and SIDSS JO318-0600 are given in Tables 1

>

Dust in clump = FeLoBAL QSOs are redder than average

CAFG, Quataert, & Murray,



Implications for QSO feedback

® Not a cold, thin shell outflow!
shogked
®  Most of kinetic power in hot wing
flow: Vin
Mhot — SWQhOtRNIQOt [, Uhot 050 *4
Q})
® Can be estimated from FeLoBALs Rsiy

assuming Vhot™VY and pressure €q.
= F) ~2—5% Ly
P~2-10 Lyol/c
M 2~ 1,000 — 2,000 Mg, yr—*

CAFG, Quataert, & Murray,



FeLoBAL energetics agree well
with molecular outflows in ULIRGs

Recent observations of outflows
in local ULIRGs also indicate

.K ~ few % Lbol AGN

(Feruglio+10, Fischer+10, Sturm+11,
Rupke & Veilleux I 1)

FeLoBALs may be analogous
galaxy-scale AGN outflows in
later (‘blow out’) evolutionary
stage
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vigorous star rmation and/or accreting cent
possible < and outflow mechanisms (e

supernovae. radiation press a debated
(see. e.g.. the review by Veilleux et al. 2005).
such mechanisms could indeed be suffic
that are strong enough to significantly
and to actually quench the star formation in
1 also unclear from the models whether it
distinguish AGN-driven outflows from stellar

e.g.. Hopki &

e) are

affect the

1r
Elvis 2010). In

the
ng. we adopt an empirical approach with our new data.

H4.1. Are the Strong Outflows We Observe Driven by the AGN
Rather tharn by the Star Formeation in These Objects?

. 2005b. 2005¢) and Krug et al. (2010)
amples of AGN and star-forming galaxies
(blueshifted optical Nar 5890. 5896 ab-
sorption features). They found that. for fixed SFR. ULIRGs
with higher AGN fractions have higher neutral gas outflow ve-
locities, reaching velocities bove 1000 km s—!

b, -line AGN (see also. e.g.. Heckman et al. 200(
2005, 2006: Thack 2006). Theoretical models p
that supernovae-driven outflows cannot reach velocities higher

+1 1



Summary

®  FelLoBALs probe QSO outflows

Radiative shock, cloud crushing model explains all the

observed FeLoBAL properties (not regular BALs / disk winds!)
®  Model + observations= Ek ~ 2 — 5% Liyq
Provides support for (sub-resolution) M-0 models

Energetics consistent with ULIRG molecular outflows



Extra Slides



In principle, can derive mechanical properties
of the QSO wind

®  Common assumption of partial, cold thin shell (e.g., Arav 10)
' BAL ; 1. 2
Maphen = 87TQR]\[H U U by = 5 shellV

= Fx ~ 0.05 — 1% Lpo for £2=0.2 (Moe+09, Dunn+10, Bautista+10)

® But:

g can we understand the implied FeLoBAL properties
(esp., AR/R~107)?

- what is the proper way of relating the observations to



The possible roles of AGN feedback

Establish correlations between

SMBH and galaxy properties Truncate star formation

I I I I
Stellar dynamics

EEEEEEEEEEE

Salim+07

ltekin+09

Also, prevent gas cooling in massive halos (“radio
mode’’)



Prescription-based model successes

If f~5% of L., couples to the ISM, then simulations can

reproduce the M-0 relation and truncate star formation
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ty oo bhlilack holess e cratizags = uarst o>f sStaawxr Fforzmaaticona'T, = maergzer leads to
Stromazx ianflowws that feoed Zas to the supoermassive black hole arad

= therclby powwer the qguasar The cmoerzsy rclecascd by the <guuasa
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observational constraints

Silk, Rees, Springel, Di Matteo, Hernquist, Hopkins, Wyithe, Loeb, ...



